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A "Schrodinger cat"-likestate of mattehas been generated the single atomevel. A
trapped® Bé ion was laser-cooled to the zero-point energy and then prepared in a superposition of
spatially separated coherent harmonic oscillator states. We create this state by applying a sequence
of laser pulses, which entangle inter(electronic) and external (motionatates of the ion. We
verify the Schrédinger cat superposition by detecting the quantum mechanical interference between
the localizedvavepackets.This mesoscopic systemay provide insight intdhe fuzzy boundary
between classical and quantum worlds by allowing controlled studies of quantum measurement and

guantum decoherence.
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Quantum mechanics allovise possibility of preparingphysical systems isuperposition
states, or states which are "smeared" between two or more distinct values. This curious principle of
guantum mechanicfl] has been extremely successful at describing physical behavior in the
microscopic world - from interactions of atoms with photons to interactions at the sub-nuclear level.
But what happens when we extethé quantum superpositigainciple to macroscopisystems
conventionally described by classical physidd@re, superpositions introduce a great amount of
conceptual difficulty, apointedout in 1935 by the celebrated Einstein-Podolsky-Rd&¢rand
Schrédinger cat [3] paradoxes. For example, in Schrddinger's thought experiment [3], an unfortunate
cat is placed in a quantum superpositiobeihg dead and alive (correlated with a single radioactive
atom which has and has not decayed). The state of the system can be represented by the entangled

guantum mechanical wave-function,
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where|©) and|®) refer to the states of a live and dead cat,|ahend| 1) refer to the internal states
of an atomwhich has and hasot radioactively decayed. This situation defies our sense of reality,
because wenly observe live or dead cats, and we expect that cats are alitreeror dead
independent of our observation [4]. Schrodinger's cat paradox is a classic illustration of the conflict
between the existence of quantum superpositions and our real world experience of observation and
measurement.

Although superpositiostatessuch as Schrodingekat do not appear in thleacroscopic
world, there is great interest in the realization of "Schrédinger cat-like" states in mesoscopic systems,
or systems that haveoth macroscopic and microscopic features.thia context, the “cat” is
generalized toepresent physical systemvhose attributes amormally associated witlelassical
concepts, such as the distinguishable position of a particle (instead of the state of livelihood of a real
cat). In this article, we report the creation of a mesoscopic "Schrodinger cat" state at the single atom
level - an atom is prepared in a quantum superpositidw@kpatially separated bubcalized

positions. In analogy to Schrodinger's original proposition given by Eq. 1, we create the state:
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where |x;) and |x,) denoteclassical-likewavepacket states corresponding to separspadial
positions of the atom, and) and|1) refer to distinct internal electronic quantstates of the
atom [5]. The wavepackets are separated by a mesoscopic distance of morenthawi&@h is
large compared to the size of the individual wavepackefsnm) as well as the atomic dimension
(= 0.1 nm).

Mesoscopic Schrodinger cats may provide an interesting testing ground for the controversial
theory of quantum measurement [6]. At gwre ofthis historical issue ithe question of the
universality ofquantum mechanics. The "Copenhagen interpretationbbf B] and Heisenberg
[8] holds that the measuring apparatus always involves classical concepts, thus forcing a seemingly
arbitrary division between the quantum and classical worlds. Einstein [2] on the other hand argued
that forquantummechanics to be complete, it should describe physical behavior at all scales. One

practical approach toward resolving this controversy is the introduction of quantum decgh@rence

the environmentally-induceceduction of quantum superpositions into statistical mixtures and
classicalbehavior [9]. Decoherence é@mmonlyinterpreted as way of quantifyingthe elusive
boundary betweenlassical andjuantum worlds, and almost always precludesettistence of
macroscopic Schrbédingeat states, except aktremelyshorttime scale$9,10]. The creation of
mesoscopic Schrodingeat statesnayallow controlled studies of quantum decoherence and the
guantum/classical boundary. We note that quantum decoherence has received much interest lately
due to its importance in proposals for quantum computation [11] and quantum cryptography [12].
Macroscopic superposition states of matter have been realized for electron [13], neutron [14],
and atom [15peamsplitters, where these particles are split into superpositions of separated paths.
The matter wavepackets in themseperiments spread in timsincethe particles are unbound.
Spatially separated superpositions of electmwitisin atoms have been demonstratedekgiting
electrons to Rydberg states with pulsed lasers [16]. Here, the electron wavepacket is also dispersive

due to its anharmonic bindimgptential. There have been related propofalshe creation of



macroscopic superposition states of vibration in molecules or crystals [17] and of electrical currents
flowing in superconducting rings [18].

The appeal of creating a Schrodingat state in darmonic oscillator is that wavepacket
dispersion can be negligible. The simple time evolution of a coherent harmonic oscillator wavepacket
preserves the separation of the superposition, adsl visualization andnterpretation of
experiments. There have been several proposal®#te mesoscopic Schrédingat states in a
single mode of the electromagnetic field, which is formally equivalent to a harmonic oscillator. For
instance, these states are expecte@vave fromthe amplitude dispersion of a laser beam
propagating in an anharmonic Kerr medium [19]. In cavity-quantum-electrodynamics, these states
are predicted to emerge by driving a coherent state with a Jaynes-Cummings interaction to the point
of collapse [20], by continuously pumping a single cavity mode with polarized two-level atoms [21],
or by realizing a dispersive interaction between a single atom and a single cavity mode [22,23]. The
creation of Schrodinger cat states of a single harmonically bound atom has been proposed by driving
the atom with a strong laser field and relying on a measurement to project the desired superposition

state [24], or by optically pumping the atom to a "dark" state with multiple laser beams [25].

EXPERIMENTAL APPROACH

In the present work, we create a Schrddinger cat state of the harmonic oscillator by forming

a superposition of two coherent state wavepackets of a single trapped atom with a sequence of laser
pulses. Each wavepacket is correlated with a particular internal state of the atom. To analyze this
state we apply an additional laser pulse to cotiénternalstates and weeasure theesulting
interference othe distinct wavepackets [26,27]. Tkey features obur approach are that (i) we
control the harmonic motion of the trapped atom to a high degree by exciting the motion from initial
zero-point wavepackets to coherent state wavepackets of well-defined amplitude and phase; (ii) we
do not rely on a conditional measurement to project out the desired Schrodinger cat state; and (iii)
wavepacket dispersion of the atomic motion is negligible.

The experimental apparatus is described elsewhere [28,29]. Aingle Be ion is confined in
a coaxial-resonator rf-ion trap [28] that provides harmonic oscillation frequencieg,of (w,)/2r

~ (11.2, 18.2, 29.8) MHz along the principal axes of the trap. We laser-cool the ion to the quantum



ground state of motiof29], and then coherently manipulate its internal (electronic) and external
(motional) state bypplying pairs obff-resonant laser beamshich drivetwo-photonstimulated
Raman transitions [29,30]. As shown in Fig. 1a,tthe internalstates of interest are tiséable
’S,,(F=2,m =-2and?S, (F = 1, m =1) hyperfineground states (denoted by), and | 1),
respectively), separated in frequencydpy2n ~ 1.250 GHz. Here, F anddm are quantum numbers
representing the total internal angular momentum of the atom and its projection along a quantization
axis. TheRaman beamare detuned b ~ -12 GHzfrom the?B,, (F = 2, m = -2¢xcitedstate,
which acts as theirtual level providingthe Raman coupling.The external motionadtates are
characterized by the quantized vibrational harmonic oscillator $tet@s the x-dimension, separated
in frequency byw, /21t ~ 11.2 MHz.

When we tune the Raman beam difference frequencypgand apply the “carrier beams”
A and B of Fig. 1, the ion experiences a coherent Rabi oscillation between the internal siaites
| 1), By adjusting the exposure time of the carrrier beams, we can for example “flip” the internal state
(am-pulse, or ¥z of a Rabi cycle), or “split/recombine” the internal staté2@ulse, or ¥4 of a Rabi
cycle). Transitions on the carrier do not significantly affect the state of motion, because beams A and
B are copropagating. Mén wetune theRaman beam difference frequentsarw, and apply the
"displacement” beams B and C of Fig. 1, the effect is formally dgnivi applying the displacement
operator to the state afiotion[30]. Alternatively,the displacement beams can theught of as
producing a "walking wavepattern whose time-dependatipole force resonantly excites the
harmonicmotion [31]. This force promotes an initial zero-point state of mgnto a coherent
state|B), = €2 X B(n!)”|n), [32], wherep = a€e® is a dimensionless complex number which
represents thamplitude and phase tfe motion in théharmonic potentigl33]. Theprobability
distribution of vibrationalevels in acoherent state Boissonian with mean number of vibrational
quantan) = . The coherent state of motion is much like classical motion in a harmonic potential
with amplitude 2x,, where ¥ =#/2mw,)” = 7.1(1) nm is the root-mean-square Gaussian size of the
oscillating wavepacket, m is the mass of the ion,taisdPlanck’s constant divided by.2

The polarizations of the three Raman beams A, B, and C praduck, ands™ couplings,
respectivelywith respect to a quantizatiaxis defined by an appli€@l20 mT magrik field, as

indicated in Fig. 1b. As a result, tHesplacement beams (B and C) affecty the motionalstate



correlated with thé1), internal state, since tle-polarized beam C cannot couple the internal state

|1), to any virtual® B, states [34]. This selectivity ofthe displacement force providegiantum
entanglement of the internal state with the external motional state. Although the motional state can
be thought of as nearly classical, its entanglement with the internal atomic quantum levels precludes
any type of semi-classical analysis.

Each Raman beam contairs MW of power at313 nm. This results in a two-photon Rabi
frequency of/2n = 250 kHz for the copropagatifRgman carrier beams A and B, or-gulse
exposure time of aboutds. Weapplythe displacement Raman beams (B and Chhiion in
directions such that their wavevector differedkepoints nearly along the x-axis of the trap. Motion
in the y or zdimensions ishereforehighly insensitive tdhe displacement beams. When we apply
the displacement beams taero-point wavepacket (correlated with the, state) fortime t, we
expect to create a coherent statamplitudea = nQ,t. Here,n = 0.205(5) is th&.amb-Dicke
parameter [30] an@/2n ~ 300 kHz is the coupling strength of the displacement beams (numbers
in parentheses are the standard errors ihagtedigit). After each preparatiaycle (described
below), we detecivhich internalstate (!); or | 1)) the atom occupies independent ofsitate of
motion. This is accomplished by applying a few microwatts-pblarized light ("detection” beam
D of Fig. 1a) resonant with the cycling), - ?P;,(F = 3, g = -3) transition (radiative linewidf2x
~ 19.4 MHz at» ~ 313 nm) and observing the resulting ion fluoresceBexause this radiation does
not appreciably couple to the), state, the fluorescence reading is proportional to the probabhility P
the ion is in staté!),. We collect on averagel photon per measurement cycle when the ion is in
the | |); state [29].

CREATION AND DETECTION OF THE SCHRODINGER CAT STATE

The ion is first laser-cooled so the | |);|n=0), state is occupied95% of thetime as

described i129]. We thermapply five £quential pulses of the Raman beams (the evolving state of
the system is summarized in Table | and Big. (1) A n/2-pulse on the carrieplits the wave-
function into an equal superposition of stateg0), and|1),/0).. (2) The displacement beams excite
the motion correlated with thie ), component to a coherent state'*?).. (3) Ar-pulse on the

carrier swaps the internal states of the superposition. (4) The displacement beams excite the motion



correlated with thé1), component to a second coherent sta@”?),. (5) A final /2-pulse on the
carrier combines the two coherent states. The relative phases of the above steps are determined by
the phases of the rf difference frequencies of the Raman beams [29,30], which are easily controlled
by phase-locking the rf sources.

The state created after step 4 is a superposititwmfndependent coherestates each
correlated with an internal state of the ion, in the spirit of Schrddinger's original thought experiment
(Egs. 1 an®). Weverify this superposition by recombining the coherent wavepackets in the final

step 5. This creates the entangled state:

|®) = [1h|S), - i|1}[S) with

e b
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For ¢=n andd=0, the statesS,), (when properly normalizedjre known aseven" and'odd"
Schrddinger cats [35].

The relative populations ¢f ), and| 1), depend on the motional phase differefpdaetween
the two coherent wavepackets, because of thaetgpmeinterference between the two coherent states
contained inS,),. We directly measure this interference by detecting the probahiliy thdt the
ion is in the| ), internalstate for agiven value ofp. We continuously repedbe experiment -
cooling, state preparation, detectionwhile slowly sweepinghe relative coherenstatemotional
phasep. Figure 3 depicts the expected position basis wavep&cké&t), |? correlated with the!);
internal state as a function ¢ffor 6=0 anda=3. Thecalculated wavepackets in tfigure are
shapshots in time, as eggért of thesuperposition oscillates the harmonictrap. The measured

signal P §) is just the integral of the complelte), wavepacket over space and is time-independent:

1 - e X0 cosE +a?sing)
2

P.(®) = [1(x/S)[2dx = (4)

The wavepackets of the superposition are maximally separated in phase sgpaee-fgrwhere the
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signal isapproximately “4for largea). However, a® approaches zero, the wavepackets of the
superposition begin toverlap, finally interfering completely &=0. For larger, the signal P¢)
acquires oscillations neap=0, with the width of the central interferenégnge (in ¢-space)
proportional to 1¢% If the two pieces of the wavepacket are not phase-coherent or if the state is a
statistical mixture § random between preparations) instead of a coherent superposition of
wavepackets, thegial would rermain constant, P¢) = %2. We experimentallget thephased
associated with thenternal state superposition hylocking the displacement beams:£0) and
measuring P = stn(2).

SUPERPOSITIONS VERSUS MIXTURES

In Fig. 4, we display the measuredd) for =0 and a few different values of the coherent

state amplitude:, which is set by changing the duratioof application of the displacement beams
(steps 2 and 4 of Tablg The presence of the interference feature tpedx verifies that we are
producing superposition states instead of statistical mixtures, and the feature clearly nagr®vs as
increased. We have verified that the interference feature vanish@s$24] whend is randomized
between preparations. In Fig. 5, we presenpPfdr threedifferent values othe phasé while
fixing t. The shape of the interferencepatO indicates the parity of the cat stateat +w. Here,

we see the transition from an even ¢éatr() to the "Yurke-Stoler" [19] catdEr/2) to an odd cat
state §~0) correlated with thé! ), state.

We extract the amplitude of the Schrddinger cat state by fitting the interference data to the
parameter. appearing in Eq. 4. The extracted valueg afjree with the independently measured
valuenf t for shortdisplacement beamurations € < 10 ps)[36]. Wemeasure coherestate
amplitudes as high as~ 2.97(6), corresponding to an averagemf~ 9 vibrational quanta in the
state of motion. This indicates anaximum spatial separation ofe&k, = 83(3) nm, which is
significantly larger than the single wavepacket size pf x = 7.1(1) nm. The individual wavepackets
are thus clearly separated in phase space.

For longer displacement beatuarations € = 10 us),the interference signal loses contrast,
as evident in Fig. 4d. We believe this is partly due to fluctuations of the ion oscillation freguyency

which causes thenotional phase differencp to fluctuate from measurement to measurement and



wash out narrow interference features. The measured interference signal is sensitive to fluctuations
of w, at a time scale which is longer than the time to create the_cat (= 10 ps) but shorter than

the integrated measurement timel(s per data point in Figs. 4 and 5). The observed loss of contrast
indicates a phase fluctuation &) ~ 0.1 rad,which would be consistent with a fractional ion
oscillation frequency fluctuation &w,/w, ~ 10* in a~100 kHz bandwidth. Anharmonicities of the

trap [28] are expected to contribute to a phase dispersion of d@fyrad during the creation of the

cat.

DECOHERENCE

When a Schrodinger cat consisting of two separated coherent states is coupled to a thermal

reservoir, the superpositionrechys exponentially to a statistical mixture withrade initially
proportional ta?, or the square of the separation of the wavepackets [9,10,27]. As the separation
is made larger (more classical), the lifetime of the superposition shortens. This decoherence process
underliesthe reason quantum superpositionsrevegenerally seen ithe macroscopic world, and
also illustrates theexperimental difficulty inpreparing andmaintaining even mesoscopic
superpositions.

In the experiment, the quantum interference interferengealsiis only sensitive to
decoherence during the periodtiofie t. between the generation of the two coherent states (steps
2 and 4 of Table I). This is because only the internal atomic state is detected, and once the second
coherent state is produced (step 4),ithernal and motionadtates do naointeract - even if the
motion equilibrates with an external reservoir. We therefore expect the interference signal (Eq. 4)
to exhibit a contrast of exp?At,), wherel is the temperature-dependent relaxatiate to the
thermal reservoir [10]. The loss of contrast we obserag involvethe onset of decoherence,
although it is difficult to make a quantitative comparison because we do not know the spectrum and
effective temperature of the supposed reservoir. We note that werbemrisly measured a heating
rate ofa(n)/ot = 1CG*/s [29], bubecause the source of this heating is not understood at the present
time, it is difficult to characterize its effect on decoherence.

We are currently devoting effort to deliberately induce decoherence of the Schrédinger cat

by coupling the system to “engineered” reservoirs during the intervéor instance, we can apply



a uniform stochastic electric field, whose coupling to the ion could simulate a thermal reservoir at a
controllabletemperature. Alternatively, we can pulsthe Raman beams and controllal@djfow
spontaneousmission tooccurduring theinterval ¢, (Similar to stimulated Ramagooling [29]).

With this coupling, we can simulate thermal, zero-temperature, squeezed, and other reservoirs [37].
By monitoring the contrast of the interference signal, we should then be able to study the decoherence
of the Schrodinger cat to these known reservoirs. We might also measure the effects of decoherence
by mapping the completdensity matrix ofthe Schrodingercat state, as proposed riecent
tomographic schemes [38].

We finally note that outechnique for preparing Schrédingsat superpositions of two
coherent states in omgmension canasily beextended to create superpositions of more than two
coherent states, and superpositions in two and three dimensions. This technique may also be useful
for the creation of superposition states of the collective motion of many trapped atoms.

This work is supported by the USffice of NavalResearch and the USmy Research
Office. We acknowledge key assistance from Witdno, D. Leibfried, J.CBergquist, and J.
Erickson, and useful discussions with. Cirac, P. Zoller, and D. @lls. Wethank M. Young, S.

Mechels, and D. Lee for critical comments on the manuscript
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Table I. Raman beam pulse sequence for the generation of a Schrddinger cat state. The magnitude
(phase) of the coherent state is controlled by the duration (phase) of the applied displacement beams
in steps 2 and 4. The phases of internal state carrier operations in steps 1, 3, 5 are relative to step 5.
The states created after each step do not include queaale factors, and the phase appearing in the

final state i = p-2v+m.

approximate state created (see Fig. 2)
step function duration (us) phase (initial statel:l ),|0),)
1.  carriern/2-pulse 0.5 H [11):]0) - i€™| 1),]0)J/ 2
2 displacement 1~10.0 $/2 []1):]0) - i€™| 1), &™) ]IV 2
3. carriern-pulse 1.0 v [V 1), ae™?), +ie™| 1),|0) ]V 2
4 displacement 1~10.0 /2 [€CW] 1), |ae™?), + ie™| 1), ae®®) ]V 2
5 carriern/2-pulse 0.5 0 LR | 0™, - o | ae®?) ]

i12] 1] |02, + 0| 0?2 ]
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FIGURE CAPTIONS

Fig 1. (a)Electronic (internal) and motional (external) enelepels(not toscale) of thérapped

°Be" ion, coupled by indicated laser beams A through D. The difference frequency of the "carrier"
Raman beams A and Bsst neaw,/2n = 1.250 GHz providing atwo-photonRaman coupling
betweenthé $ (F=2,,m =-2)ahd,S (F=1, m =-1) hyperfine ground states (denptgd by
and| 1), respectively). The difference frequency of the "displacement” Raman beams B and C is set
to w /21 ~ 11.2 MHz. This excites the motion of the ion to a coherent sta&), from an initial
zero-point state of motiof®), in the harmonic potential. Because of the polarization of beams B and
C, they do not affect motion correlated with the internal state. The three Raman beams (A, B,
and C) are detunedl ~ -12 GHzfrom the?R,, (F = 2, m = -2¢xcitedstate(radiativelinewidth
v/2n~=19.4 MHz). Detection of thmternalstate isaccomplished by illuminatinthe ion with o™-
polarized "detectionbeam D, which drivethecycling?S,, (F =2, m =2) - ?P,,(F=3, m =-3)
transition, and observing the scattered fluorescence. (b) Geometry of the three Raman laser beams
A, B, and C, with polarizations indicated. The quantization axis defined by the applied magnetic field
B is 45° from the x-axis of the harmonic trap potential.

Fig 2. Evolution of the position-space atomiavepacket entangled with the internal statesand

| 1), during creation of a Schrodingeat statewvith «=3 andd=x (see Table I). The wavepackets

are snapshots in time, taken whitbie atom is at the extrema of motion in theemonic trap
(represented by the parabolas). The area of the wavepackets corresponds to the probability of finding
the atom in the given internal state. (a) The initial wavepacket corresponds to the quantum ground
state of motion following laser-coolingdb) The wavepacket split following an/2-pulse on the
carrier. (c) The 1), wavepacket is excited to a coherstate by the forc€ of thedisplacement
beams. Note théorce F actsonly onthe | 1), wavepacket, therebgntanglingthe internal and
motional systems.(d) The|l), and|1), wavepackets are exchangetlowing a m-pulse on the

carrier. (e) The 1), wavepacket is excited to a coherstate by thalisplacement beam foreE,

which is out of phase with respect to the force in (c). Sthgeshown in(e) corresponds most
closely to Schrodinger’s cat (Egs. 1 and 2). (f) Theand| 1), wavepackets are finally combined
following am/2-pulse on the carrier.

Fig 3. Evolution of the position-space wavepacket superposition correlated with)tirgernal

state as the phase separatjoof the two coherent states is varied,de8 andé=0. The expected

signal R ) is the integrated area under these wavepackets. Each trace is a snapshot in time, taken
when one of the wavepackets is at the right-most turning point imahmonictrap. The
wavepackets ammaximallyseparated ab=m [P, (¢) = ¥2], butbegin to overlap a$ getssmaller

[P, () oscillates]. Finally, the wavepackets destructively interfeqe=at[P, (¢) = 0]. This vanishing
interference signal is a signature of an odd Schrédinger cat state associated Withstate, since

0=0. Probability conservation is ensured by a similar but constructive interference iiy 8tate.

Fig 4. Measured and fit interference signal@) yersus the phasdfferenced of two coherent

states fob=0. Curves (a) to (d) represent measurements for various valuég,d, 5, and 15 ps,
respectively). As grows, the feature ned=0 narrows. The lines are fits of the measurements to

12



the parametex (EQ. (4)), yieldingx = 0.84, 1.20, 1.92, and 2.97. The fit in curve (d) includes a loss
of contrast and represents a superposition of fwoxnm wavepackets with a maximum separation
of 4ax, ~ 80 nm. Curvde) is a theoretical plot for a pair of coherent states w#h Each data
point in (a) to (d) represents an average4900 measurements, or 1 s of integration.

Fig 5. Measured interference signal &) (for threevalues ofd (o = 1.5). Thesolid curve
corresponds té = 1.03t (approximate eveopat state correlatedith | 1), exhibitingconstructive
interference), the dashed curvedte 0.48t (approximate "Yurke-Stoler" cat state [19d the
dotted curve t@ = 0.06t (approximate odd cat state exhibiting destructive interference). Each data
point represents an average~d000 measurements, or 1 s of integration.
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